226 research outputs found

    Analyzing the Effect of Objective Correlation on the Efficient Set of MNK-Landscapes

    Get PDF
    In multiobjective combinatorial optimization, there exists two main classes of metaheuristics, based either on multiple aggregations, or on a dominance relation. As in the single objective case, the structure of the search space can explain the difficulty for multiobjective metaheuristics, and guide the design of such methods. In this work we analyze the properties of multiobjective combinatorial search spaces. In particular, we focus on the features related the efficient set, and we pay a particular attention to the correlation between objectives. Few benchmark takes such objective correlation into account. Here, we define a general method to design multiobjective problems with correlation. As an example, we extend the well-known multiobjective NK-landscapes. By measuring different properties of the search space, we show the importance of considering the objective correlation on the design of metaheuristics.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Protein Sequencing with an Adaptive Genetic Algorithm from Tandem Mass Spectrometry

    Full text link
    In Proteomics, only the de novo peptide sequencing approach allows a partial amino acid sequence of a peptide to be found from a MS/MS spectrum. In this article a preliminary work is presented to discover a complete protein sequence from spectral data (MS and MS/MS spectra). For the moment, our approach only uses MS spectra. A Genetic Algorithm (GA) has been designed with a new evaluation function which works directly with a complete MS spectrum as input and not with a mass list like the other methods using this kind of data. Thus the mono isotopic peak extraction step which needs a human intervention is deleted. The goal of this approach is to discover the sequence of unknown proteins and to allow a better understanding of the differences between experimental proteins and proteins from databases

    NILS: a Neutrality-based Iterated Local Search and its application to Flowshop Scheduling

    Get PDF
    This paper presents a new methodology that exploits specific characteristics from the fitness landscape. In particular, we are interested in the property of neutrality, that deals with the fact that the same fitness value is assigned to numerous solutions from the search space. Many combinatorial optimization problems share this property, that is generally very inhibiting for local search algorithms. A neutrality-based iterated local search, that allows neutral walks to move on the plateaus, is proposed and experimented on a permutation flowshop scheduling problem with the aim of minimizing the makespan. Our experiments show that the proposed approach is able to find improving solutions compared with a classical iterated local search. Moreover, the tradeoff between the exploitation of neutrality and the exploration of new parts of the search space is deeply analyzed

    A Parallel Adaptive GA for Linkage Disequilibrium in Genomics.

    Get PDF
    In this paper, we treat the linkage disequilibrium, used to discover haplotypes, candidate to explain multi-factorial diseases such as diabetes or obesity, as an optimization problem where a given objective function has to be optimized. In order to determine what kind of algorithm will be able to solve this problem, we first study the specificities and the structure of the problem. Results of this study show that exact algorithms are not adapted to this specific problem and lead us to the development of a parallel dedicated adaptive multipopulation genetic algorithm that is able to find several haplotypes of different sizes. After describing the biological problem, we present the dedicated genetic algorithm, its specificities, such as the use of several populations and its advanced mechanisms such as the adaptive choice of operators, random immigrants, and its parallel implementation. We give results on a real dataset

    Metaheuristics and cooperative approaches for the Bi-objective Ring Star Problem

    Get PDF
    International audienceThis paper presents and investigates different approaches to solve a new bi-objective routing problem called the ring star problem. It consists of locating a simple cycle through a subset of nodes of a graph while optimizing two kinds of cost. The first objective is the minimization of a ring cost that is related to the length of the cycle. The second one is the minimization of an assignment cost from non-visited nodes to visited ones. In spite of its obvious bi-objective formulation, this problem has always been investigated in a single-objective way. To tackle the bi-objective ring star problem, we first investigate different stand-alone search methods. Then, we propose two cooperative strategies that combine two multi-objective metaheuristics: an elitist evolutionary algorithm and a population-based local search. We apply these new hybrid approaches to well-known benchmark test instances and demonstrate their effectiveness in comparison to non-hybrid algorithms and to state-of-the-art methods

    A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO

    Get PDF
    International audienceThis paper presents a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. A concise overview of evolutionary algorithms for multiobjective optimization is given. A substantial number of methods has been proposed so far, and an attempt of conceptually unifying existing approaches is presented here. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. This model is then incorporated into the ParadisEO-MOEO software framework. This framework has proven its validity and high flexibility by enabling the resolution of many academic, real-world and hard multiobjective optimization problems

    Rules extraction in linkage disequilibrium mapping with an adaptive genetic algorithm

    Get PDF
    Paris, FranceIn this paper, we present an evolutionary approach to discover candidate haploty pes in a linkage disequilibrium study. This work takes place into the study of f actors involved in multi-factorial diseases such as diabetes and obesity. A firs t study on the linkage disequilibrium problem structure led us to use a genetic algorithm to solve it. Due to the particular, but classical, evaluation function given by the biologists, we design our genetic algorithm with several populatio ns. This model lead us to implement different cooperative operators such as muta tion and crossover. Probabilities of application of those mechanisms are set ada ptively. In order to introduce some diversity, we also implement a random immigr ant strategy and to cover up the cost of the evaluation computation we paralleli ze it in a master / slave model. Different combinations of the presented mechani sms are tested on real data and compared in term of robustness and computation c ost. We show that the most complete strategy is able to find the best solutions and is the most robust

    A new distance measure based on the exchange operator for the HFF-AVRP

    Get PDF
    The Heterogeneous Fixed Fleet Asymmetric Vehicle Routing Prob- lem (HFF-AVRP) is a N P-hard optimization problem. Instances analysis and in particular, fitness landscape analysis, may help problem solving. Such anal- ysis require the definition of a distance between feasible solutions. Such a dis- tance does not exist for the HFF-AVRP and this report aims at proposing a new distance measure defined from the exchange operator. In order to compute the exchange-distance between two solutions, four algorithms are suggested and then experimented. One of them is proved to be robust and to give the exact distance whereas others only compute an upper bound

    A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO

    Get PDF
    This paper gives a concise overview of evolutionary algorithms for multiobjective optimization. A substantial number of evolutionary computation methods for multiobjective problem solving has been proposed so far, and an attempt of unifying existing approaches is here presented. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual global model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. The presented model is then incorporated into a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. This package has proven its validity and flexibility by enabling the resolution of many real-world and hard multiobjective optimization problems
    • …
    corecore